Copied to
clipboard

G = C32xC4oD4order 144 = 24·32

Direct product of C32 and C4oD4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C32xC4oD4, C4.5C62, C22.C62, C62.15C22, (C2xC12):7C6, D4:2(C3xC6), (C3xD4):5C6, (C3xQ8):7C6, Q8:3(C3xC6), (C6xC12):11C2, C12.27(C2xC6), (D4xC32):8C2, C2.3(C2xC62), (Q8xC32):8C2, C6.16(C22xC6), (C3xC6).41C23, (C3xC12).55C22, (C2xC4):3(C3xC6), (C2xC6).5(C2xC6), (C3xC12)o(D4xC32), (C3xC12)o(Q8xC32), SmallGroup(144,181)

Series: Derived Chief Lower central Upper central

C1C2 — C32xC4oD4
C1C2C6C3xC6C62D4xC32 — C32xC4oD4
C1C2 — C32xC4oD4
C1C3xC12 — C32xC4oD4

Generators and relations for C32xC4oD4
 G = < a,b,c,d,e | a3=b3=c4=e2=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >

Subgroups: 138 in 120 conjugacy classes, 102 normal (10 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C2xC4, D4, Q8, C32, C12, C2xC6, C4oD4, C3xC6, C3xC6, C2xC12, C3xD4, C3xQ8, C3xC12, C3xC12, C62, C3xC4oD4, C6xC12, D4xC32, Q8xC32, C32xC4oD4
Quotients: C1, C2, C3, C22, C6, C23, C32, C2xC6, C4oD4, C3xC6, C22xC6, C62, C3xC4oD4, C2xC62, C32xC4oD4

Smallest permutation representation of C32xC4oD4
On 72 points
Generators in S72
(1 37 31)(2 38 32)(3 39 29)(4 40 30)(5 33 24)(6 34 21)(7 35 22)(8 36 23)(9 15 25)(10 16 26)(11 13 27)(12 14 28)(17 55 51)(18 56 52)(19 53 49)(20 54 50)(41 72 45)(42 69 46)(43 70 47)(44 71 48)(57 66 61)(58 67 62)(59 68 63)(60 65 64)
(1 13 7)(2 14 8)(3 15 5)(4 16 6)(9 24 29)(10 21 30)(11 22 31)(12 23 32)(17 64 69)(18 61 70)(19 62 71)(20 63 72)(25 33 39)(26 34 40)(27 35 37)(28 36 38)(41 50 68)(42 51 65)(43 52 66)(44 49 67)(45 54 59)(46 55 60)(47 56 57)(48 53 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 4 3 2)(5 8 7 6)(9 12 11 10)(13 16 15 14)(17 18 19 20)(21 24 23 22)(25 28 27 26)(29 32 31 30)(33 36 35 34)(37 40 39 38)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 52)(2 49)(3 50)(4 51)(5 41)(6 42)(7 43)(8 44)(9 59)(10 60)(11 57)(12 58)(13 66)(14 67)(15 68)(16 65)(17 40)(18 37)(19 38)(20 39)(21 46)(22 47)(23 48)(24 45)(25 63)(26 64)(27 61)(28 62)(29 54)(30 55)(31 56)(32 53)(33 72)(34 69)(35 70)(36 71)

G:=sub<Sym(72)| (1,37,31)(2,38,32)(3,39,29)(4,40,30)(5,33,24)(6,34,21)(7,35,22)(8,36,23)(9,15,25)(10,16,26)(11,13,27)(12,14,28)(17,55,51)(18,56,52)(19,53,49)(20,54,50)(41,72,45)(42,69,46)(43,70,47)(44,71,48)(57,66,61)(58,67,62)(59,68,63)(60,65,64), (1,13,7)(2,14,8)(3,15,5)(4,16,6)(9,24,29)(10,21,30)(11,22,31)(12,23,32)(17,64,69)(18,61,70)(19,62,71)(20,63,72)(25,33,39)(26,34,40)(27,35,37)(28,36,38)(41,50,68)(42,51,65)(43,52,66)(44,49,67)(45,54,59)(46,55,60)(47,56,57)(48,53,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4,3,2)(5,8,7,6)(9,12,11,10)(13,16,15,14)(17,18,19,20)(21,24,23,22)(25,28,27,26)(29,32,31,30)(33,36,35,34)(37,40,39,38)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,52)(2,49)(3,50)(4,51)(5,41)(6,42)(7,43)(8,44)(9,59)(10,60)(11,57)(12,58)(13,66)(14,67)(15,68)(16,65)(17,40)(18,37)(19,38)(20,39)(21,46)(22,47)(23,48)(24,45)(25,63)(26,64)(27,61)(28,62)(29,54)(30,55)(31,56)(32,53)(33,72)(34,69)(35,70)(36,71)>;

G:=Group( (1,37,31)(2,38,32)(3,39,29)(4,40,30)(5,33,24)(6,34,21)(7,35,22)(8,36,23)(9,15,25)(10,16,26)(11,13,27)(12,14,28)(17,55,51)(18,56,52)(19,53,49)(20,54,50)(41,72,45)(42,69,46)(43,70,47)(44,71,48)(57,66,61)(58,67,62)(59,68,63)(60,65,64), (1,13,7)(2,14,8)(3,15,5)(4,16,6)(9,24,29)(10,21,30)(11,22,31)(12,23,32)(17,64,69)(18,61,70)(19,62,71)(20,63,72)(25,33,39)(26,34,40)(27,35,37)(28,36,38)(41,50,68)(42,51,65)(43,52,66)(44,49,67)(45,54,59)(46,55,60)(47,56,57)(48,53,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4,3,2)(5,8,7,6)(9,12,11,10)(13,16,15,14)(17,18,19,20)(21,24,23,22)(25,28,27,26)(29,32,31,30)(33,36,35,34)(37,40,39,38)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,52)(2,49)(3,50)(4,51)(5,41)(6,42)(7,43)(8,44)(9,59)(10,60)(11,57)(12,58)(13,66)(14,67)(15,68)(16,65)(17,40)(18,37)(19,38)(20,39)(21,46)(22,47)(23,48)(24,45)(25,63)(26,64)(27,61)(28,62)(29,54)(30,55)(31,56)(32,53)(33,72)(34,69)(35,70)(36,71) );

G=PermutationGroup([[(1,37,31),(2,38,32),(3,39,29),(4,40,30),(5,33,24),(6,34,21),(7,35,22),(8,36,23),(9,15,25),(10,16,26),(11,13,27),(12,14,28),(17,55,51),(18,56,52),(19,53,49),(20,54,50),(41,72,45),(42,69,46),(43,70,47),(44,71,48),(57,66,61),(58,67,62),(59,68,63),(60,65,64)], [(1,13,7),(2,14,8),(3,15,5),(4,16,6),(9,24,29),(10,21,30),(11,22,31),(12,23,32),(17,64,69),(18,61,70),(19,62,71),(20,63,72),(25,33,39),(26,34,40),(27,35,37),(28,36,38),(41,50,68),(42,51,65),(43,52,66),(44,49,67),(45,54,59),(46,55,60),(47,56,57),(48,53,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,4,3,2),(5,8,7,6),(9,12,11,10),(13,16,15,14),(17,18,19,20),(21,24,23,22),(25,28,27,26),(29,32,31,30),(33,36,35,34),(37,40,39,38),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,52),(2,49),(3,50),(4,51),(5,41),(6,42),(7,43),(8,44),(9,59),(10,60),(11,57),(12,58),(13,66),(14,67),(15,68),(16,65),(17,40),(18,37),(19,38),(20,39),(21,46),(22,47),(23,48),(24,45),(25,63),(26,64),(27,61),(28,62),(29,54),(30,55),(31,56),(32,53),(33,72),(34,69),(35,70),(36,71)]])

C32xC4oD4 is a maximal subgroup of
C62.39D4  D4.(C3:Dic3)  C62.73D4  C62.74D4  C62.75D4  C62.154C23  C32:92- 1+4  Q8:C9:4C6  C4oD4:He3
C32xC4oD4 is a maximal quotient of
D4xC3xC12  Q8xC3xC12

90 conjugacy classes

class 1 2A2B2C2D3A···3H4A4B4C4D4E6A···6H6I···6AF12A···12P12Q···12AN
order122223···3444446···66···612···1212···12
size112221···1112221···12···21···12···2

90 irreducible representations

dim1111111122
type++++
imageC1C2C2C2C3C6C6C6C4oD4C3xC4oD4
kernelC32xC4oD4C6xC12D4xC32Q8xC32C3xC4oD4C2xC12C3xD4C3xQ8C32C3
# reps1331824248216

Matrix representation of C32xC4oD4 in GL3(F13) generated by

100
090
009
,
300
010
001
,
1200
050
005
,
100
080
055
,
1200
083
055
G:=sub<GL(3,GF(13))| [1,0,0,0,9,0,0,0,9],[3,0,0,0,1,0,0,0,1],[12,0,0,0,5,0,0,0,5],[1,0,0,0,8,5,0,0,5],[12,0,0,0,8,5,0,3,5] >;

C32xC4oD4 in GAP, Magma, Sage, TeX

C_3^2\times C_4\circ D_4
% in TeX

G:=Group("C3^2xC4oD4");
// GroupNames label

G:=SmallGroup(144,181);
// by ID

G=gap.SmallGroup(144,181);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-2,889,338]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^4=e^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<